

Mel Suffet

Environmental Science & Engineering Program

CLA, School - Public Health Los Angeles, California

- -Critical to Understanding Odor Nuisance
- -Naming Consensus Between Panelists and the Public

Compost Odor Wheel

EACH Odorant Concentration versus Odor Intensity

- Semi-logarithmic relationship
- Different chemicals have different curves

KELEASING ODOKANIS INIO AIK

Case Study 1.Compost Treatment of Raw Sludge from a WWTP

Sludge A	Avg.	S.D.
Hay/Manure	3.5	3
Sewery/Fecal	2.5	2.2
Ammonia	1.5	0.9
Earthy	1.5	1.7
Rotten vegetable	1.3	1.6
Burnt	note	

Sludge B	Avg.	S.D.
Ammonia	7.5	0.9
Earthy	2	2
Rotten fishy	1.5	1.7
Dead animal	note	
Hay	note	

Sludge C	Avg.	S.D.
Fecal	5.5	0.9
Hay	3	2.2
Rancid	2	2.4
Ammonia	1.3	1.6
Earthy	note	
Rotten vegetable	note	

Raw Sludge Odors
Fecal
Sewery/Fecal
Rotten vegetable
Rancid
Ammonia
Rotten fishy
Hay/Manure
Hay
Earthy/Musty

Compost from Bury 07/12/2006

Case Study 2. 4/28/06 Biofilter Results

Biofilter In	Avg.	S.D.	Biofilter Out	Avg.	S.D.
Cabbage	6	2.4	Cabbage	3	3
Fish	5	3.3	Fish	1.5	1.7
Sewery	note		Rancid	note	
Acid	note		Fecal	note	
Earthy	note		Oxidant	note	
			Pine	note	

Note: Basis of quantification - H2S

Case 3. Odors-Biological WW Treatment

Odor Type	Times used in Consensus		
(60 samples/yr)	Year 1	Year 2	
oniony	60	38	
garlicky	29	18	
dec.vegetation	29	39	
earthy	20	42	
briny	19	2	
musty	15	8	
solventy	12	14	
creeky	11	20	
6 others	<10 identifi	cations	

Aerated activated sludge is one source of odors

Case Study 3- 2001-5

- Odor surveys in the community at one wastewater plant had identified a particular persistent odor
- The odor team described it as "canned corn" (rotten cabbage) in odor quality
- The odor team agreed that is smelled just like an odor standard of dimethyl sulfide
- MICROBIOLOGICALLY:
- R-O-CH₃ + H₂S \rightarrow R-OH + CH₃SH
- R-O-CH₃ + CH₃SH \rightarrow R-OH +CH₃SCH₃
- $CH_3SH + CH_3SH + O_2 \rightarrow H_2O + CH_3SSCH_3$

Typical Levels of DMS in 2004/ 2005 at the WWT Plant

Location	Oct - Nov	April 2004	Aug – Sept 2004	May (avg) 2005
	2003 (avg)		(3 washes from R&H)	(uniform discharges)
R&H		9-63	ND – 706	47
PST #1 In		12-176	35 - 5980	457
PST #1 Out		16-149	50 - 4800	520
PST #2 Out				487
Aeration Tanks	561 (ppb)	11-215	15 – 1510	72, 164
RAS		15-98	74 - 3200	441
Plant Effluent				ND

Dimethyl Sulfide (DMS)

- DMS was unusually high compared to methyl mercaptan and dimethyl trisufide
- An industrial source in the sewer collection system was tracked down
- The industry was discharging dimethyl sulfoxide (DMSO)
- Microbiologically DMSO → DMS

Dimethyl Sulfoxide (DMSO)

- Studies were conducted in cooperation with the industrial source to reduce discharges of the DMSO
- DMSO below levels of 400 µg/L have reduced the DMS to about 50 µg/L or less, and the "canned corn" (rotten cabbage) DMS odor has not been a problem

Case Study 4. Sludge Drying Odors

STEP 1.CLASSIFYING ODOR CATEGORIES

33 dried sludge samples at different stages of treatment plus samples generated by a lab sludge drying pilot

SAMPLE 11				
	Avg.	S.D.		
Fecal	4,2	3,6		
Earthy	2,9	2,7		
Fishy	2,8	3,3		
Ammonia	2,4	2,2		
Manure	note			
Dead animal	note			
Rancid	note			
Bunt coffee	note			
Rotten cabbage	note			

Table 1. Example of a OPM Results for a Sludge Dried Sample

Odor	Total samples	Number of samples with the odor	Intensity Avg. ^a
Rotten fishy	33	30	4.1
Manure/Hay	33	28	3.6
Earthy/Musty	33	29	2.4
Rancid	33	19	2.2
Shrimp	33	8	2.2
Fecal	33	28	2
Sweet	33	3	1.9
Burnt coffee	33	4	1.9
Ammonia	33	21	1.8
Burnt	33	15	1.6
Rotten			
vegetable	33	5	1.5
Dead Animal	33	5	1.2
Sewery	33	5	1.1

Sludge Drying Odor Wheel

STEP 2. PHYSICO-CHEMICAL ANALYSIS

Concentration / OTC maxi - (8/11/06)

STEP 3. CONFIRMATION OF ODORANTS BY OLFACTORY-GC/MS

Correspondence between odour descriptors and specific chemicals as determined by olfactory-GC/MS (sample 2)

Retention time (min)	Odour at olfactory port	Compound identified
3.37	Burnt-Rotten egg	Carbonyl sulphide (COS)
8.39	Vinegar	Acetic acid
9.38	Rotten cabbage- garlic	Dimethyldisulfide
17.20	Rancid	Butyric acid

STEP 3. CONFIRMATION OF ODORANTS BY OLFACTORY-

-Can form from the reaction of sulfur with C=O

-Also present in foodstuffs.

Mass spectrum of carbonyl sulfide (O=C=S)

CONFIRMATORY ANALYSIS

CONFIRMATION OF ODORANTS BY OLFACTORY-GC/MS

Conclusions

- The human nose continues to be the most sensitive and quickest way to measure odor.
- •The "odor wheel" represents an excellent tool to represent the character of the odor
- The "odor intensity" is found from the W-F curve
- The Odor Profile Method determines the Odor Character and Intensity by an Odor Panel
- Chemical analysis is used to backstop OPM.